Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Neurosurg Focus ; 55(6): E2, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38039525

RESUMEN

OBJECTIVE: There is growing evidence for the use of enhanced recovery protocols (ERPs) in cranial surgery. As they become widespread, successful implementation of these complex interventions will become a challenge for neurosurgical teams owing to the need for multidisciplinary engagement. Here, the authors describe the novel use of an implementation framework (normalization process theory [NPT]) to promote the incorporation of a cranial surgery ERP into routine neuro-oncology practice. METHODS: A baseline audit was conducted to determine the degree of implementation of the ERP into practice. The Normalization MeAsure Development (NoMAD) questionnaire was circulated among 6 groups of stakeholders (neurosurgeons, anesthetists, intensivists, recovery nurses, preoperative assessment nurses, and neurosurgery ward staff) to examine barriers to implementation. Based on these findings, a theory-guided implementation intervention was delivered. A repeat audit and NoMAD questionnaire were conducted to assess the impact of the intervention on the uptake of the ERP. RESULTS: The baseline audit (n = 24) demonstrated limited delivery of the ERP elements. The NoMAD questionnaire (n = 32) identified 4 subconstructs of the NPT as barriers to implementation: communal specification, contextual integration, skill set workability, and relational integration. These guided an implementation intervention that included the following: 1) teamwork-focused training; 2) ERP promotion; and 3) procedure simplification. The reaudit (n = 21) demonstrated significant increases in the delivery of 5 protocol elements: scalp block (12.5% of patients before intervention vs 76.2% of patients after intervention, p < 0.00001), recommended analgesia (25.0% vs 100.0%, p < 0.00001) and antiemetics (12.5% vs 100.0%, p < 0.00001), trial without catheter (13.6% vs 88.9%, p < 0.00001), and mobilization on the 1st postoperative day (45.5% vs 94.4%, p < 0.00001). There was a significant reduction in the mean hospital length of stay from 6.3 ± 3.4 to 4.2 ± 1.7 days (p = 0.022). Two months after implementation, a repeat NoMAD survey demonstrated significant improvement in communal specification. CONCLUSIONS: Here, the authors have demonstrated the successful implementation of a cranial surgery ERP by using a systematic theory-based approach.


Asunto(s)
Procedimientos Neuroquirúrgicos , Humanos , Encuestas y Cuestionarios , Tiempo de Internación
2.
Br J Neurosurg ; : 1-5, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36537230

RESUMEN

PURPOSE: This study aimed to describe our institutional use of a commercially available mixed reality viewer within a multi-disciplinary planning workflow for awake craniotomy surgery and to report an assessment of its usability. MATERIALS AND METHODS: Three Tesla MRI scans, including 32-direction diffusion tensor sequences, were reconstructed with BrainLab Elements auto-segmentation software. Magic Leap mixed reality viewer headsets were registered to a shared virtual viewing space to display image reconstructions. System Usability Scale was used to assess the usability of the mixed reality system. RESULTS: The awake craniotomy planning workflow utilises the mixed reality viewer to facilitate a stepwise discussion through four progressive anatomical layers; the skin, cerebral cortex, subcortical white matter tracts and tumour with surrounding vasculature. At each stage relevant members of the multi-disciplinary team review key operative considerations, including patient positioning, cortical and subcortical speech mapping protocols and surgical approaches to the tumour.The mixed reality system was used for multi-disciplinary awake craniotomy planning in 10 consecutive procedures over a 5-month period. Ten participants (2 Anaesthetists, 5 Neurosurgical trainees, 2 Speech therapists, 1 Neuropsychologist) completed System Usability Scale assessments, reporting a mean score of 71.5. Feedback highlighted the benefit of being able to rehearse important steps in the procedure, including patient positioning and anaesthetic access and visualising the testing protocol for cortical and subcortical speech mapping. CONCLUSIONS: This study supports the use of mixed reality for multidisciplinary planning for awake craniotomy surgery, with an acceptable degree of usability of the interface. We highlight the need to consider the requirements of non-technical, non-neurosurgical team members when involving mixed reality activities.

3.
BMJ Open ; 10(8): e040898, 2020 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-32801210

RESUMEN

OBJECTIVES: Pressures on healthcare systems due to COVID-19 has impacted patients without COVID-19 with surgery disproportionally affected. This study aims to understand the impact on the initial management of patients with brain tumours by measuring changes to normal multidisciplinary team (MDT) decision making. DESIGN: A prospective survey performed in UK neurosurgical units performed from 23 March 2020 until 24 April 2020. SETTING: Regional neurosurgical units outside London (as the pandemic was more advanced at time of study). PARTICIPANTS: Representatives from all units were invited to collect data on new patients discussed at their MDT meetings during the study period. Each unit decided if management decision for each patient had changed due to COVID-19. PRIMARY AND SECONDARY OUTCOME MEASURES: Primary outcome measures included number of patients where the decision to undergo surgery changed compared with standard management usually offered by that MDT. Secondary outcome measures included changes in surgical extent, numbers referred to MDT, number of patients denied surgery not receiving any treatment and reasons for any variation across the UK. RESULTS: 18 units (75%) provided information from 80 MDT meetings that discussed 1221 patients. 10.7% of patients had their management changed-the majority (68%) did not undergo surgery and more than half of this group not undergoing surgery had no active treatment. There was marked variation across the UK (0%-28% change in management). Units that did not change management could maintain capacity with dedicated oncology lists. Low volume units were less affected. CONCLUSION: COVID-19 has had an impact on patients requiring surgery for malignant brain tumours, with patients receiving different treatments-most commonly not receiving surgery or any treatment at all. The variations show dedicated cancer operating lists may mitigate these pressures. STUDY REGISTRATION: This study was registered with the Royal College of Surgeons of England's COVID-19 Research Group (https://www.rcseng.ac.uk/coronavirus/rcs-covid-research-group/).


Asunto(s)
Neoplasias Encefálicas/cirugía , Toma de Decisiones Clínicas , Infecciones por Coronavirus/epidemiología , Grupo de Atención al Paciente/organización & administración , Neumonía Viral/epidemiología , Betacoronavirus , COVID-19 , Atención a la Salud , Inglaterra/epidemiología , Encuestas de Atención de la Salud , Humanos , Pandemias , Estudios Prospectivos , SARS-CoV-2
4.
J Parkinsons Dis ; 9(2): 301-313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30829619

RESUMEN

BACKGROUND: Intraputamenal glial cell line-derived neurotrophic factor (GDNF), administered every 4 weeks to patients with moderately advanced Parkinson's disease, did not show significant clinical improvements against placebo at 40 weeks, although it significantly increased [18F]DOPA uptake throughout the entire putamen. OBJECTIVE: This open-label extension study explored the effects of continued (prior GDNF patients) or new (prior placebo patients) exposure to GDNF for another 40 weeks. METHODS: Using the infusion protocol of the parent study, all patients received GDNF without disclosing prior treatment allocations (GDNF or placebo). The primary outcome was the percentage change from baseline to Week 80 in the OFF state Unified Parkinson's Disease Rating Scale (UPDRS) motor score. RESULTS: All 41 parent study participants were enrolled. The primary outcome decreased by 26.7±20.7% in patients on GDNF for 80 weeks (GDNF/GDNF; N = 21) and 27.6±23.6% in patients on placebo for 40 weeks followed by GDNF for 40 weeks (placebo/GDNF, N = 20; least squares mean difference: 0.4%, 95% CI: -13.9, 14.6, p = 0.96). Secondary endpoints did not show significant differences between the groups at Week 80 either. Prespecified comparisons between GDNF/GDNF at Week 80 and placebo/GDNF at Week 40 showed significant differences for mean OFF state UPDRS motor (-9.6±6.7 vs. -3.8±4.2 points, p = 0.0108) and activities of daily living score (-6.9±5.5 vs. -1.0±3.7 points, p = 0.0003). No treatment-emergent safety concerns were identified. CONCLUSIONS: The aggregate study results, from the parent and open-label extension suggest that future testing with GDNF will likely require an 80- rather than a 40-week randomized treatment period and/or a higher dose.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Putamen/diagnóstico por imagen , Antiparkinsonianos/uso terapéutico , Dihidroxifenilalanina/análogos & derivados , Femenino , Radioisótopos de Flúor , Humanos , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones , Putamen/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
Brain ; 142(3): 512-525, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30808022

RESUMEN

We investigated the effects of glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease, using intermittent intraputamenal convection-enhanced delivery via a skull-mounted transcutaneous port as a novel administration paradigm to potentially afford putamen-wide therapeutic delivery. This was a single-centre, randomized, double-blind, placebo-controlled trial. Patients were 35-75 years old, had motor symptoms for 5 or more years, and presented with moderate disease severity in the OFF state [Hoehn and Yahr stage 2-3 and Unified Parkinson's Disease Rating Scale motor score (part III) (UPDRS-III) between 25 and 45] and motor fluctuations. Drug delivery devices were implanted and putamenal volume coverage was required to exceed a predefined threshold at a test infusion prior to randomization. Six pilot stage patients (randomization 2:1) and 35 primary stage patients (randomization 1:1) received bilateral intraputamenal infusions of GDNF (120 µg per putamen) or placebo every 4 weeks for 40 weeks. Efficacy analyses were based on the intention-to-treat principle and included all patients randomized. The primary outcome was the percentage change from baseline to Week 40 in the OFF state (UPDRS-III). The primary analysis was limited to primary stage patients, while further analyses included all patients from both study stages. The mean OFF state UPDRS motor score decreased by 17.3 ± 17.6% in the active group and 11.8 ± 15.8% in the placebo group (least squares mean difference: -4.9%, 95% CI: -16.9, 7.1, P = 0.41). Secondary endpoints did not show significant differences between the groups either. A post hoc analysis found nine (43%) patients in the active group but no placebo patients with a large clinically important motor improvement (≥10 points) in the OFF state (P = 0.0008). 18F-DOPA PET imaging demonstrated a significantly increased uptake throughout the putamen only in the active group, ranging from 25% (left anterior putamen; P = 0.0009) to 100% (both posterior putamina; P < 0.0001). GDNF appeared to be well tolerated and safe, and no drug-related serious adverse events were reported. The study did not meet its primary endpoint. 18F-DOPA imaging, however, suggested that intermittent convection-enhanced delivery of GDNF produced a putamen-wide tissue engagement effect, overcoming prior delivery limitations. Potential reasons for not proving clinical benefit at 40 weeks are discussed.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Adulto , Anciano , Método Doble Ciego , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Bombas de Infusión Implantables , Masculino , Persona de Mediana Edad , Neuroglía/metabolismo , Efecto Placebo , Resultado del Tratamiento
6.
Cancer Manag Res ; 10: 3483-3500, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254491

RESUMEN

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is a lethal type of pediatric brain tumor that is resistant to conventional chemotherapies. Palbociclib is a putative novel DIPG treatment that restricts the proliferation of rapidly dividing cancer cells via selective inhibition of cyclin-dependent kinase (CDK) 4 and CDK6. However, implementing palbociclib as a monotherapy for DIPG is unfeasible, as CDK4/6 inhibitor resistance is commonplace and palbociclib does not readily cross the blood-brain barrier (BBB) or persist in the central nervous system. To inhibit the growth of DIPG cells, we aimed to use palbociclib in combination with the rapamycin analog temsirolimus, which is known to ameliorate resistance to CDK4/6 inhibitors and inhibit BBB efflux. MATERIALS AND METHODS: We tested palbociclib and temsirolimus in three patient-derived DIPG cell lines. The expression profiles of key proteins in the CDK4/6 and mammalian target of rapamycin (mTOR) signaling pathways were assessed, respectively, to determine feasibility against DIPG. Moreover, we investigated effects on cell viability and examined in vivo drug toxicity. RESULTS: Immunoblot analyses revealed palbociclib and temsirolimus inhibited CDK4/6 and mTOR signaling through canonical perturbation of phosphorylation of the retinoblastoma (RB) and mTOR proteins, respectively; however, we observed noncanonical downregulation of mTOR by palbociclib. We demonstrated that palbociclib and temsirolimus inhibited cell proliferation in all three DIPG cell lines, acting synergistically in combination to further restrict cell growth. Flow cytometric analyses revealed both drugs caused G1 cell cycle arrest, and clonogenic assays showed irreversible effects on cell proliferation. Palbociclib did not elicit neurotoxicity in primary cultures of normal rat hippocampi or when infused into rat brains. CONCLUSION: These data illustrate the in vitro antiproliferative effects of CDK4/6 and mTOR inhibitors in DIPG cells. Direct infusion of palbociclib into the brain, in combination with systemic delivery of temsirolimus, represents a promising new approach to developing a much-needed treatment for DIPG.

7.
J Neurosci Methods ; 308: 337-345, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179705

RESUMEN

BACKGROUND: The design and use of convection-enhanced delivery catheters remains an active field as clinical trials have highlighted suboptimal distribution as a contributory factor to the failure of those studies. Recent studies indicate limitations and challenges in achieving target coverage using conventional point source delivery. NEW METHOD: The recessed step catheter(RSC), developed by this group, does not function as a point source delivery device, but instead uses 'controlled reflux' of the infusate to a flow inhibiting recess feature. Here we investigate a range of clinically useful step lengths in agarose gel and investigate proof-of-principle in vivo(n = 5). Infusion morphology was characterised in terms of length, width and distribution volume over a range of flow rates. RESULTS: For a fixed infusion volume, increases in catheter step length strongly correlated with increases in the length and volume of distribution (r>0.90, p < 0.001) whilst there were small reductions in the width of distribution (r<-0.62, p < 0.001). Step lengths below 6 mm produced spherical distributions while steps above 12 mm produced elongated distributions. Increasing peak flow rates resulted in significant reductions in distribution volume at each step length, and an increased risk of reflux beyond the step. Modifications to the infusion morphology using changes in step length were confirmed in vivo. CONCLUSIONS: The combination of the recessed step and the ability to adjust the step length with this catheter design make it highly suitable for tailoring the distribution volume of the infusate to meet specific morphological target volumes in the brain.


Asunto(s)
Encéfalo/fisiología , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Animales , Cateterismo/instrumentación , Cateterismo/métodos , Catéteres , Convección , Sus scrofa
8.
PLoS One ; 12(5): e0176855, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542253

RESUMEN

Targeting epigenetic changes in diffuse intrinsic pontine glioma (DIPG) may provide a novel treatment option for patients. This report demonstrates that sodium valproate, a histone deacetylase inhibitor (HDACi), can increase the cytotoxicity of carboplatin in an additive and synergistic manner in DIPG cells in vitro. Sodium valproate causes a dose-dependent decrease in DIPG cell viability in three independent ex vivo cell lines. Furthermore, sodium valproate caused an increase in acetylation of histone H3. Changes in cell viability were consistent with an induction of apoptosis in DIPG cells in vitro, determined by flow cytometric analysis of Annexin V staining and assessment of apoptotic markers by western blotting. Subsequently, immunofluorescent staining of neuronal and glial markers was used to determine toxicity in normal rat hippocampal cells. Pre-treatment of cells with sodium valproate enhanced the cytotoxic effects of carboplatin, in three DIPG cell lines tested. These results demonstrate that sodium valproate causes increased histone H3 acetylation indicative of HDAC inhibition, which is inversely correlated with a reduction in cell viability. Cell viability is reduced through an induction of apoptosis in DIPG cells. Sodium valproate potentiates carboplatin cytotoxicity and prompts further work to define the mechanism responsible for the synergy between these two drugs and determine in vivo efficacy. These findings support the use of sodium valproate as an adjuvant treatment for DIPG.


Asunto(s)
Adyuvantes Farmacéuticos/farmacología , Anticonvulsivantes/farmacología , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Glioma/tratamiento farmacológico , Ácido Valproico/farmacología , Acetilación/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Neoplasias del Tronco Encefálico/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Reposicionamiento de Medicamentos/métodos , Epigénesis Genética/efectos de los fármacos , Glioma/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratas
9.
Drug Deliv ; 23(1): 167-73, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-24786643

RESUMEN

CONTEXT: Inadequate penetration of the blood-brain barrier (BBB) by systemically administered chemotherapies including carboplatin is implicated in their failure to improve prognosis for patients with glioblastoma. Convection-enhanced delivery (CED) of carboplatin has the potential to improve outcomes by facilitating bypass of the BBB. OBJECTIVE: We report the first use of an implantable CED system incorporating a novel transcutaneous bone-anchored port (TBAP) for intermittent CED of carboplatin in a patient with recurrent glioblastoma. MATERIALS AND METHODS: The CED catheter system was implanted using a robot-assisted surgical method. Catheter targeting accuracy was verified by performing intra-operative O-arm imaging. The TBAP was implanted using a skin-flap dermatome technique modeled on bone-anchored hearing aid surgery. Repeated infusions were performed by attaching a needle administration set to the TBAP. Drug distribution was monitored with serial real-time T2-weighted magnetic resonance imaging (MRI). RESULTS: All catheters were implanted to within 1.5 mm of their planned target. Intermittent infusions of carboplatin were performed on three consecutive days and repeated after one month without the need for further surgical intervention. Infused volumes of 27.9 ml per day were well tolerated, with the exception of a single seizure episode. Follow-up MRI at eight weeks demonstrated a significant reduction in the volume of tumor enhancement from 42.6 ml to 24.6 ml, and was associated with stability of the patient's clinical condition. CONCLUSION: Reduction in the volume of tumor enhancement indicates that intermittent CED of carboplatin has the potential to improve outcomes in glioblastoma. The novel technology described in this report make intermittent CED infusion regimes an achievable treatment strategy.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Carboplatino/administración & dosificación , Carboplatino/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Administración Cutánea , Antineoplásicos/efectos adversos , Carboplatino/efectos adversos , Catéteres de Permanencia , Convección , Epilepsia Generalizada/complicaciones , Femenino , Humanos , Infusiones Intravenosas , Imagen por Resonancia Magnética , Persona de Mediana Edad , Robótica
10.
J Neurosci Methods ; 259: 47-56, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26617320

RESUMEN

BACKGROUND: Intraparenchymal convection-enhanced delivery (CED) of therapeutics directly into the brain has long been endorsed as a medium through which meaningful concentrations of drug can be administered to patients, bypassing the blood brain barrier. The translation of the technology to clinic has been hindered by poor distribution not previously observed in smaller pre-clinical models. In part this was due to the larger volumes of target structures found in humans but principally the poor outcome was linked to reflux (backflow) of infusate proximally along the catheter track. Over the past 10 years, improvements have been made to the technology in the field which has led to a small number of commercially available devices containing reflux inhibiting features. NEW METHOD: While these devices are currently suitable for acute or short term use, several indications would benefit from longer term repeated, intermittent administration of therapeutics (Parkinson's, Alzheimer's, Amyotrophic lateral sclerosis, Brain tumours such as Glioblastoma Multiforme (GBM) and Diffuse intrinsic Pontine Glioma (DIPG), etc.). RESULTS: Despite the need for a chronically accessible platform for such indications, limited experience exists in this part of the field. COMPARISON WITH EXISTING METHOD(S): At the time of writing no commercially available clinical platform, indicated for chronic, intermittent or continuous delivery to the brain exists. CONCLUSIONS: Here we review the improvements that have been made to CED devices over recent years and current state of the art for chronic infusion systems.


Asunto(s)
Encéfalo , Catéteres , Sistemas de Liberación de Medicamentos/métodos , Convección , Humanos
11.
PLoS One ; 10(7): e0132266, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26186224

RESUMEN

We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas.


Asunto(s)
Carboplatino/uso terapéutico , Convección , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Endocitosis/efectos de los fármacos , Glioblastoma/patología , Hipocampo/patología , Humanos , Masculino , Nanopartículas/toxicidad , Neurotoxinas/toxicidad , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Wistar , Sus scrofa
13.
Am J Transl Res ; 6(2): 169-78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489997

RESUMEN

The main determinant of glioblastoma (GBM) resistance to temozolomide (TMZ) is thought to be O(6)-methylguanine-DNA methyltransferase (MGMT), which is a DNA-repair enzyme that removes alkyl groups from the O(6)-position of guanine. Previously, we reported that a MGMT-siRNA/cationic liposome complex exerted a clear synergistic antitumor effect in combination with TMZ. Translation to a clinical setting might be desirable for reinforcing the efficacy of TMZ therapy for GBM. In this study, we aim to evaluate the safety of MGMT-siRNA/cationic liposome complexes and determine whether the convection-enhanced delivery of these complexes is suitable for clinical use by undertaking preclinical testing in laboratory animals. No significant adverse events were observed in rats receiving infusions of MGMT-siRNA/cationic liposome complex directly into the brain with or without TMZ administration. A pig which received the complex administered by CED also showed no evidence of neurological dysfunction or histological abnormalities. However, the complex did not appear to achieve effective distribution by CED in either the rat or the porcine brain tissue. Considering these results together, we concluded that insufficient distribution of cationic liposomes was achieved for tumor treatment by CED.

14.
Brain Pathol ; 24(2): 117-27, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23944716

RESUMEN

Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD).


Asunto(s)
Encefalopatías/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/instrumentación , Enfermedad de Alzheimer/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Catéteres , Convección , Glioma/tratamiento farmacológico , Humanos , Enfermedad de Parkinson/tratamiento farmacológico
15.
Pharmacol Ther ; 138(2): 155-75, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23348013

RESUMEN

Glial cell-derived neurotrophic factor (GDNF), and the neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are important for the survival, maintenance and regeneration of specific neuronal populations in the adult brain. Depletion of these neurotrophic factors has been linked with disease pathology and symptoms, and replacement strategies are considered as potential therapeutics for neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's diseases. GDNF administration has recently been shown to be an effective treatment for Parkinson's disease, with clinical trials currently in progress. Trials with NGF for Alzheimer's disease are ongoing, with some degree of success. Preclinical results using BDNF also show much promise, although there are accompanying difficulties. Ultimately, the administration of a therapy involving proteins in the brain has inherent problems. Because of the blood-brain-barrier, the protein must be infused directly, produced by viral constructs, secreted from implanted protein-secreting cells or actively transported across the brain. An alternative to this is the use of a small molecule agonist, a modulator or enhancer targeting the associated receptors. We evaluate these neurotrophic factors as potential short or long-term treatments, weighing up preclinical and clinical results with the possible effects on the underlying neurodegenerative process.


Asunto(s)
Factores de Crecimiento Nervioso/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Factor Neurotrófico Derivado de la Línea Celular Glial/química , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/uso terapéutico , Humanos , Ligandos , Modelos Moleculares , Factores de Crecimiento Nervioso/administración & dosificación , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo
16.
J Alzheimers Dis ; 32(1): 43-56, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22751177

RESUMEN

Enzymatic degradation contributes to the control of intracerebral amyloid-ß (Aß) peptide levels. Previous studies have demonstrated the therapeutic potential of viral vector-mediated neprilysin (NEP) gene therapy in mouse models of Alzheimer's disease (AD). However, clinical translation of NEP gene therapy is limited by ethical and practical considerations. In this study we have assessed the potential of convection-enhanced delivery (CED) as a means of elevating intracerebral NEP level and activity and degrading endogenous Aß. We analyzed the interstitial and perivascular distribution of NEP following CED into rat striatum. We measured NEP protein level, clearance, activity, and toxicity by ELISA for NEP and synaptophysin, NEP-specific activity assay, and immunohistochemistry for NEP, NeuN, glial fibrillary acidic protein and Iba1. We subsequently performed CED of NEP in normal aged rats and measured endogenous Aß by ELISA. CED resulted in widespread distribution of NEP, and a 20-fold elevation of NEP protein level with preservation of enzyme activity and without evidence of toxicity. CED in normal, aged rats resulted in a significant reduction in endogenous Aß(40) (p = 0.04), despite rapid NEP clearance from the brain (half-life ~3 h). CED of NEP has therapeutic potential as a dynamically controllable Aß(40)-degrading therapeutic strategy for AD. Further studies are required to determine the longer term effects on Aß (including Aß(42)) and on cognitive function.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Neprilisina/administración & dosificación , Neprilisina/uso terapéutico , Envejecimiento/fisiología , Enfermedad de Alzheimer/metabolismo , Animales , Antígenos Nucleares/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Proteínas de Unión al Calcio/metabolismo , Cateterismo , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Ensayo de Inmunoadsorción Enzimática , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Masculino , Proteínas de Microfilamentos/metabolismo , Neprilisina/farmacocinética , Proteínas del Tejido Nervioso/metabolismo , Neuroimagen , Nimodipina/farmacología , Vehículos Farmacéuticos , Polietilenglicoles , Ratas , Ratas Wistar , Sinaptofisina/metabolismo
17.
Fluids Barriers CNS ; 9(1): 2, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22264361

RESUMEN

BACKGROUND: Convection-enhanced delivery (CED), a direct method for drug delivery to the brain through intraparenchymal microcatheters, is a promising strategy for intracerebral pharmacological therapy. By establishing a pressure gradient at the tip of the catheter, drugs can be delivered in uniform concentration throughout a large volume of interstitial fluid. However, the variables affecting perivascular distribution of drugs delivered by CED are not fully understood. The aim of this study was to determine whether the perivascular distribution of solutes delivered by CED into the striatum of rats is affected by the molecular weight of the infused agent, by co-infusion of vasodilator, alteration of infusion rates or use of a ramping regime. We also wanted to make a preliminary comparison of the distribution of solutes with that of nanoparticles. METHODS: We analysed the perivascular distribution of 4, 10, 20, 70, 150 kDa fluorescein-labelled dextran and fluorescent nanoparticles at 10 min and 3 h following CED into rat striatum. We investigated the effect of local vasodilatation, slow infusion rates and ramping on the perivascular distribution of solutes. Co-localisation with perivascular basement membranes and vascular endothelial cells was identified by immunohistochemistry. The uptake of infusates by perivascular macrophages was quantified using stereological methods. RESULTS: Widespread perivascular distribution and macrophage uptake of fluorescein-labelled dextran was visible 10 min after cessation of CED irrespective of molecular weight. However, a significantly higher proportion of perivascular macrophages had taken up 4, 10 and 20 kDa fluorescein-labelled dextran than 150 kDa dextran (p < 0.05, ANOVA). Co-infusion with vasodilator, slow infusion rates and use of a ramping regime did not alter the perivascular distribution. CED of fluorescent nanoparticles indicated that particles co-localise with perivascular basement membranes throughout the striatum but, unlike soluble dextrans, are not taken up by perivascular macrophages after 3 h. CONCLUSIONS: This study suggests that widespread perivascular distribution and interaction with perivascular macrophages is likely to be an inevitable consequence of CED of solutes. The potential consequences of perivascular distribution of therapeutic agents, and in particular cytotoxic chemotherapies, delivered by CED must be carefully considered to ensure safe and effective translation to clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...